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• “Bohmian Mechanics”
– exact, trajectory-based formulation of quantum mechanics.
– quantum wavefunction, ψ, represented by ensemble of trajectories.
– amplitude phase decomposition of ψ.

• “Quantum Trajectory”
– phase determines trajectory velocity at each point, x.
– amplitude determines quantum potential, Q, at each point, x.
– quantum trajectories obtained from Veff = V + Q
– different meaning for bipolar stationary states. 

• “Bipolar”
ψ = ψ+ + ψ -
ψ+ is “forward” or “incident” or “reacting” wave
ψ- is “backward” or “reflecting” or “non-reacting” wave

• “Wavepacket Dynamics”
– non-stationary state solutions of the time-dependent Schrödinger equation.
– ψ , ψ+ , and ψ- must be localized at all time t. 

Definition of Terms
•“real-valued, bipolar, analytic, time-dependent” in the BM BM

(Briggs-Meyers  Bohmian Mechanics) 



The Quantum Potential

• 1 Dimension

• Classical limit: 
(ideally, but often in practice, )

The correspondence principle is not satisfied  at the trajectory level, so 
that classical and quantum trajectories are completely different in the 
classical limit. 

• It can even happen that Q diverges!!!
This is associated with the so-called “node problem”, which makes it 
impossible to propagate quantum trajectories for realistic molecular 
applications, for which there is always some interference.

ψ=







∂
∂−= R

x
R

Rm
xQ   e      wher1

2
)( 2

22h

00 =⇒→ Qh 0≠Q



Correspondence Principle

• PROBLEM: appears to violate correspondence principle!
– classical limit = large action = many nodes = divergent Q!
– correspondence principle suggests Q→0.

• Resolution: bipolar expansion of ψ :
– unique exact quantum decomposition can be specified:

ψ = ψ + + ψ -

Q+=Q- approaches zero in the classical limit.
CORRESPONDENCE PRINCIPLE SATISFIED



Overview of Bipolar 
Decomposition Schemes (1D)

• Stationary bound states:
ψ+ and ψ- are themselves solutions of TISE. 
ψ+ and ψ- complex conjugates (R+ = R- ;  S+ = -S-).
dynamical equations decoupled.

• Stationary scattering states:
ψ+ and ψ- are not solutions of TISE. 
R+ ≠ R- ;  p+ = -p-
dynamical equations coupled, by interaction potential.

• Localized wavepacket dynamics:
ψ+ and ψ- are not solutions of TDSE. 
R+ ≠ R- ; S+ ≠ -S-
dynamical equations coupled, by interaction potential.



Bipolar Velocities for 
1D Stationary Scattering States

Momentum field definition: )]([2)( eff xVEmxp −±=±

•Classical trajectories (dashed line)
Veff(x) = V(x)
barriers give rise to turning points.

•Constant velocity trajectories 
Veff (x) = 0
asymptotic coupling (interference).

•Monotonic trajectories (solid line)
Veff (x→±∞) = V(x →±∞)
no turning points or asymp. coupling.



Combined Continuity Relation

cpl/ ρρ &±′−=∂∂ ±± jt

Detailed balance relation between 
“forward reaction” and “reverse reaction”



1D Wavepacket Dynamics
• Basic bipolar approach:

– generalize time-dependent stationary state approach.
– satisfy bipolar continuity equation: 

– FAILS, where requirements for success are:
1) perfect asymptotic separation (time and space).
2) localized ψ± , if ψ itself is localized. 
3) components ψ± themselves exhibit no interference.

cpl/ ρρ &±′−=∂∂ ±± jt



• Let φE(x) = φ+
E(x) + φ-

E(x) be the (unique) left-incident stationary 
scattering solution of the TISE, with energy E:

• Bipolar components, φ±
E(x), obtained using constant-velocity 

trajectories, must satisfy the following coupled equations:

• Differentiating w/ respect to x, and substituting yields:
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Bipolar Stationary State Expansion
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Time-Independent WKB
• Application to energy eigenstates of  

1D Hamiltonians.
• Fundamental WKB assumption:

(small wavelength assumption)
λ << ∆x, range over which V varies 

appreciably compared to E-V.
increasingly well satisfied in classical limit

(ħ→0  OR m→∞ OR E →∞)
• Equivalent conditions:

λ |V ´(x)|  <<  E-V = p2/2m
4π ħ m|V ´(x)| / p3 << 1

• Treat potential as constant, V0, over 
region of width ∆x.

Local WKB solutions are plane waves:  
A+eipx/ħ and A-e-ipx/ħ where p2=2m(E-V0)∆x

λ

V(x)

E

V0



Bipolar Stationary State Expansion
• Obtain φE(x,t) evolution equations as follows:

• Expand wavepacket Ψ(x) as sum over stationary states φE(x): 
ψ(x) = ∫ a(E) φE(x) dE
bipolar φE(x) = φ+

E(x) + φ-
E(x) leads to ψ(x) = ψ+(x) + ψ-(x),

ψ±(x) = ∫ a(E) φ±
E(x) dE
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1D Bipolar Wavepacket Dynamics
• Substitute into ψ± (x,t) expansion: 
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• “Good” wavepacket conditions for initial ψ(x,t=0):
a) localized in reactant asymptotic region of position space, x.
b) localized in positive region of momentum (Fourier) space, p.

• Formal properties of Ψ± (x,t) time evolution:
a) implies a(E) are Fourier components; b) implies initial ψ= ψ+ .
|a(E,t)|2 = const. then implies perfect sep’n at large t [condition (1)].
b) also implies Ψ± localized [condition (2)].
no formal proof for condition (3) (no nodes).

• Combined continuity equation not satisfied.



1D Eckart Barrier: 
bipolar wavepacket scattering

Density Plot



1D Ramp Barrier: 
bipolar wavepacket scattering

Density Plot



Multiple Surface Dynamics
• All of above can be generalized for multisurface problems:

– unified framework for handling multiple components and surfaces.
– in both cases, interaction potentials induce transitions, trajectory hops.

• Underlying condition essentially the same as before:
– φ i’ = a i + (φ i +

sc)’ + a i - (φ i -
sc)’ for each component, i.

– sufficient to determine unique decomposition for stationary state.
• Two-surface example (symmetric potential wavepacket dynamics):
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Multiple Surface Dynamics: 
bipolar wavepacket scattering

Density Plot



Multidimensional 
Wavepacket Scattering

• How many components?
2 or 2f, where f = # degrees of freedom? Only 2 needed.
ψ± interpretation: forward/backwards along reaction path.
Integrated quantity, Ψ± is a line integral.

• Linear reaction paths in Cartesian coordinates:
spatial coordinates are (x,y), x = rxn coord, y = ┴ modes

• Time evolution equations:
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Bottleneck Potential System:
unipolar wavepacket scattering

Density Plot



Bottleneck Potential System:
bipolar wavepacket scattering

Density Plot



Multidimensional 
Wavepacket Scattering

• Curvilinear reaction paths
Ψ∆ still a line integral, taken around curvilinear path.

Time evolution equations now have commutator terms

• How should reaction paths be defined? 
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Universality of Ψ∆ = (Ψ+ - Ψ-)
• It can be shown that Ψ∆ is the same for all reaction path 

definitions that agree asymptotically. 
• It can be shown that

Ψ∆ evolves as an ordinary TDSE wavepacket, without coupling to ψ.
initial Ψ∆(x,t=0) = Ψ(x,t=0) known analytically for Gaussian ψ(x,t=0) 

• Numerical propagation scheme:
– propagate ψ(x,t) and Ψ∆(x,t) completely independently.
– no coupling or numerical integration required.
– use conventional, efficient TDSE techniques (e.g. Crank-Nicholson).
– compute bipolar components at any time obtained via 
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Collinear H+H2 in Jacobi Coordinates:
unipolar wavepacket scattering

Density Plot



Collinear H+H2 in Jacobi Coordinates:
bipolar wavepacket scattering

Density Plot



Curvilinear Eckart + Harmonic Oscillator

Contour Plot of Potential Surface
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Curvilinear Eckart + Harmonic Oscillator: 
bipolar wavepacket scattering

Density Plot
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